
AD-AOA5 488 ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND) F/A 14A/2
A TIME-SHARING COMPUTER PROGRAM TO DRIVE UP TO THREE INDEPENDEN--ETC(U)
MAY 79 W WATT

NCSIFIE-TR ET90545DRICBR107NL

,MEhMON hhh

LINL2T / BR70107

I--

ROYL ARCRFTESTABLISHMENT

Technical Report 79054

May 1979

A TIME-SHARING COMPUTER PROGRAM
TO DRIVE UP TO THREE INDEPENDENT

FATIGUE TESTING MACHINES

by

D D C
W. Watt T-P

* B

Procurement Executive, Ministry of Defence

L.J Farnborough, Hants

UDC 620.178.3.05 519.688 681.3.025 621.9-529

ROYAL AIRCRAFT ESTABLISHMENT

Technical /ef~(9054

Received for printing 16 May 1979

(I A TIME-SHARING COMPUTER PROGRAM TO DRIVE UP TO THREE

INDEPENDENT FATIGUE TESTING MACHINES a

... by

SUMMARY

WG is a PDP-8/E computer program which offers a choice from seven resident

software sequence generators to each of three independent hardware waveform

controllers which drive electrohydraulic fatigue testing machines. The program

is controlled by teletype commands and paper tape input data. Under program

control, each controller may be run at a specified fixed frequency or fixed

loading rate. Various analysis counts are kept which may be typed on command.

One generator takes its sequence off magnetic tape and is restricted to one

controller at a time. Another version of WG may be produced, which will run five

waveform controllers and two magnetic tape units.

Departmental Reference: Structures YSE/B/0626

DDC
Copyright

nF
ControlZer FNSO London

1979

_C B2

2

LIST OF CONTENTS

Page

INTRODUCTION 3

2 SOFTWARE SEQUENCE GENERATORS 3

2.1 Random loading 4
2.2 Fixed loading 5
2.3 Block loading 5
2.4 TWIST loading 6
2.5 FALSTAFF loading 6
2.6 Magtape loading 6
2.7 Calibration loading 7

3 GENERAL DESCRIPTION 7

4 TELETYPE COMMANDS AND MESSAGES 9

5 PROGRAM INPUT DATA ;0

6 ANALYSIS OUTPUT 12

7 HARDWARE 13

8 LOADING AND STARTING WG 15

9 PROGRAM ENHANCEMENTS 16

Appendix A 17

Appendix B Magtape data 21

Tables I and 2 24

References 26

Illustrations Figures 1-7

Report documentation page inside back cover

4TIS

ACCESSI(JN Lv .I

NTIS White Section o
DDC Bjft Sectio [3J
UNANN1"'4C' D 0,

JUSTI ICAITON
,

By

T6BUTIONfAYVARUTY CUES
Dist AVAIL. and/o e CIA.

6-A

3

I INTRODUCTION

For some years in the Fatigue Research Laboratory of Structures Department

a 3-channel computer controlled system I has provided the main source of wave-

forms to drive electrohydraulic fatigue machines. This system, originally based

on a MINIC I computer, has been progressively developed over the years. In its

latest form a PDP-8/E computer supplies three hardware 'waveform controllers'

with sequences of peak and trough values defining loads to be applied in separate

fatigue tests. The controllers generate analogue waveforms by interpolating

half-cosines between the specified points. The frequency of generation of each

half cycle is controlled by the computer program WG, enabling either a specified

fixed frequency or a specified 'fixed rate' (frequency inversely proportional to

amplitude) waveform to be generated independently for each controller. WG does

not monitor the actual loads and how they compare with the demand loads. However,

the fatigue machines are equipped for Null Pacing and when this is selected,

demanded peak and trough values are held if necessary until the required load is

reached. Alternatively, a separate method of continuous monitoring can be used

which indicates when fixed rate demand loads are not being fully achieved.

WG is controlled by teletype (TTY) commands and runs three completely

independent waveform controllers, each of which can be fed by any one of the
resident software 'sequence generators' Random, Fixed , Block, TWIST2

3FALSTAFF , Magtape or Calibration loading. Program input data for the selected

generator for a particular controller is read into core from the fast paper tape

reader (PTR), by TTY commands, before the generator is started by another command.

The Magtape sequence is held on the magnetic tape unit (MTA) and is read

sequentially to one controller via double buffers in core while the generator in

running. This generator is available to only one controller at a time. Sequr;i

generators keep analysis counts of work done and these may be typed on demand.

WG is a stand-alone program in assembly language (PAL) and the only other softwnT

requirement is the manufacturers' standard binary loader BIN.

2 SOFTWARE SEQUENCE GENERATORS

Generators start by clearing their analysis counts and checking that

essential data has been loaded (section 5). The different generators are

described below. GAC are air-ground-air cycles representing landing, taxying

and take-off loads.

on

4

2.1 Random loading

This waveform is produced by a 'live' sequence generator from a small

amount of program input data and the pseudo random number generator

R n1= R n(2 13 _-3) -Iodulo 2 31

where the old value Rn is overwritten by the new value Rn~ Every call to
this algorithm produces a different random number in the range 0 to 2-

and the sequence length before it repeats is 2 31* R may be given a start
value in the input data. Fig I shows a sample waveform and the input data

(section 5) to produce it.

The waveform is described as asymmetric half cycle restrained. It is a

series of half cycles (or gusts) alternating either side of zero load (ie the

externally applied mean load), any one of which can be replaced at random by a GAC

which (here) is a single large negative gust. The probabilities of occurrence of

the different gust magnitudes (amplitude spectrum shape) are data defined with

separate definitions for positive and negative gusts. Each call to a waveform

controller produces a half cosine between sequence points and extra zero loads are

inserted automatically where a GAG is preceded or followed by a negative gust. The

sign of the first gust and of every gust following a GAG is chosen by a pseudo

'head or tail' [romn the next value of R.

The magnitude of the next gust, or its substitution by a GAC is determined

by the next value of R and a 'one-dimensional random walk' along the appropriate

'weighting list' to find the number of levels crossed. There are separate weight-

ing lists defining probabilities of occurrence of positive and negative gusts,

supplied as program input data. A weighting list is a series of positiveintegers

(ie whole numbers) PQ**P**.PQ in ascending order of magnitude. When R < P0

a GAG is substituted and when P0 < R < P1I the 'lowest load' is chosen. Every

F level crossed thereafter means that the load is increased by one increment. GAC

and lowest and incremental load magnitudes for positive and negative gusts are

defined in the program amplitude parameters (PAPS) also supplied as program input

data. Obviously P X must be one greater than the maximum possible value of R and is

entered in the weighting lists as 2147483648 which is 2 . For correct 0

functioning of the generator the minimum weighting list is the two items P0
P i(k - 1) and the maximum allowed is 21 items (Z - 20). In the data, weighting

lists are headed by the list length (k + 1). When P 0 -0 there are no GAC and

5

when Pn = Pn-I there are no loads at the nth level. For a given weighting list

the assumption is that in every 2 gusts the probabilities of occurrence at each
31 31 31level would be Po/2 ""(Pn - Pn-1)/2 ...(PE - P£-])/2 . On this basis the

user chooses weighting lists and PAPS values for his required distribution. PAPS

also contain 'truncation levels' for both positive and negative gusts and these

correspond to the suffix n in-the weighting lists. For each list, there is

no truncation when its specified truncation level is greater than or equal to Y.

2.2 Fixed loading

This generator outputs a 'fixed list' cyclically. Each waveform controller

can have a different fixed list read into core as program input data. Fixed

lists consist of up to 3455 sequence points headed by the list length. The wave-

form can be irregular. Fig 2 shows a sample waveform and the program input data

(section 5) from which it was produced.

2.3 Block loading

Fig 3 shows a sample of this waveform with the program input data

(section 5) from which it was produced. The flight list is executed cyclically

and consists of a list of up to 2890 flight type numbers. The flight list is

headed by the list length. There can be up to 10 different flight types identi-

fied by the digits 0-9. Each flight type consists of a number of blocks as

defined in the block list which describes flight types implicitly in ascending

order starting with type 0 . If less than 10 types are defined the missing

types are automatically given zero block counts. Each type is defined by a block

count followed by that number of block definitions. Each flight type can have any

number of blocks (including zero) provided the overall limit of 400 blocks is not

exceeded. The block list is headed by the number of flight types described in

the list. Flight and block lists must be supplied as program input data. Any

flight types named in the flight list which have zero block counts in the block

list are ignored when the flight list is executed and do not appear in the

analysis count of flights done. Conversely the block list may define more types

than appear in the flight list.

Blocks are defined by the items M, A, F and BN where M and A can be

signed. A block consists of BN half cycles of constant magnitude A , alter-

nating at fixed frequency F on either side of mean load M . The direction of

the first half cycle in the block is defined by the sign of A where negative

means downwards. Transitions from one block mean to the next block mean are half

cosines at minimum frequency (I Hz).

6

2.4 TWIST loading

Fig 4 shows the start of this waveform and the program input data used.I

Its derivation and generation are described in Ref 2. Like Random loading,

its sequence of 797330 points is generated 'live' from a relatively small amount

of data held in core as fixed program constants. Although generated live the

sequence is effectively 'fixed' since the generator always starts the sequence

is repeated cyclically. It consists of 4000 flights selected pseudo randomly

from 10 different flight types. Flights are of different lengths and in each

the waveform is symmetric half cycle restrained with the same number of peaks as

troughs at some or all of 10 possible load magnitudes. In WG these magnitudes

are 14, 23, 33, 43, 53, 62, 72, 81, 94 and 100 in waveform, controller units

(section 7). They are chosen to utilize the full range of controller output andI 2
conform with the load spectrum envelope in the Report

GAG may be inserted in front of every flight and these are specified as

program input data and consist of a list of up to 50 signed loads preceded by

the list length which may be zero if no GAG are required.

2.5 FALSTAFF loading

The derivation and generation of this sequence is described in Ref 3.

Generation is pseudo random but like TWIST the sequence is effectively 'fixed'.

Unlike Random and TWIST, the FALSTAFF generator requires large data tables and

is unacceptably slow to be used 'live' in WG. The 35966 point sequence was

generated off-line and a technique (Appendix A) devised to pack it into only 8K

of core memory in the form of condensed lists. These lists are assembled as

program constants in WG and they are available to all three waveform controllersL

independently, The sequence is repeated cyclically and consists of 200 different

flights each starting and ending with a few GAG which form part of the sequence.

Sequence points are integers in the range 1-32. For better definition, these

values are multiplied by three before being output in waveform controller units

(section 7). Fig 5 shows the first two flights under constant loading rate and

the program input data required (section 5).

2.6 Magtape loading

This sequence generator is available to only one waveform controller at a

time. It starts by checking that the MTA is free and switched ON LINE. If the

magnetic tape is not initially positioned at BOT (beginning of tape) it is

rewound automatically. The required sequence is no'rmally generated off-line on

7

a more powerful computer (probably using a high level language like FORTRAN) and

written directly on a magnetic tape in fixed length data blocks (Appendix B).

Alternatively the sequence may be produced off-line by hand or by a computer

which has paper tape equipment but no MTA. WG has a special routine (Appendix B)

to transfer this data to a magnetic tape. This routine can be used at any time

when the PTR and MTA are otherwise free and when not more than two waveform

controllers are active. This restriction is due to the organisation of the

program (section 3). MTA input/output is done by 'direct access' to core and

does not tie up the computer central processor unit.

The sequence is executed cyclically. Data blocks are read sequentially

into two core buffers, one block per buffer. As one buffer is being emptied the
other buffer is filled (at a much Laster rate). As soon as the last block is
read, ie while the last two blocks are being output the tape is rewound ready

to repeat the sequence. Alternatively the magnetic tape might hold a number of

repeat sequences sufficient to ensure that the test is completed before a

rewind is necessary (eg a tape can hold the equivalent of 500 FALSTAFF sequences).

This would help to avoid excessive tape wear and obviate the possibility of a

time gap when a load might have to be held to allow completion of a very long

rewind. Magnetic tapes can only stand a limited number of rewinds and short

sequences up to 3455 set points (two blocks) should be run under fixed loading

(section 2.2).

2.7 Calibration loading

This is used to check hardware response. It produces a constant amplitude

waveform with peaks and troughs at 60 and 30 load units respectively or -60 and

-30 if inverted (section 4). This generator does not keep analysis counts but *
is otherwise similar in operation to the other generators.

3 GENERAL DESCRIPTION

WG swaps computer time cyclically, in short variable length segments,

between three independent programs numbered 1-3. Each program has its own

waveform controller (section 7) and looks after its own PTR or MTA input and

controller or TTY output. Also, each has its own data area for control variables,

program input data and analysis counts making the three programs completely

independent although running concurrently. The interrupt system is not used;
sharable devices (PTR, MTA and TTY) are protected by software flags so that they

are only available to one program at a time. Controllers are serviced the next

time their programs are in control of the computer after they have asked for more

rj8
data. They are designed to call for and to accept data for the next sequence

point while outputting the current analogue half cycle thus giving a half cycle

leeway and helping to make WG 'real-time' as well as 'time-sharing'.

To save programmning time and effort these techniques were carried over from

the MINIC program when they were thought simpler to implement than an interrupt

system. The original MINIC had only a small amount of core and no interrupt

system. The method is quite adequate for the program requirements and computer

processor (CPU) utilization is such that each program appears to react instantly
to commands and to run continuously.

WG swaps computer time between the three programs in a section of code

called the control loop (Fig 6). Programs can be active or inactive. Inactive

programs stay in the control loop while active programs leave it for the lobI they are engaged on. Computer time is never allowed to 'hang' and active programs

return to the control loop every time they are held up waiting for a 'device

ready' flag. Program code execution is fast compared with hardware devices
(section 9). While swapping, WG interrogates the TTY keyboard and the command

decoder (CD) assembles and processes legal commands to start jobs on inactive

programs or stop lobs on active programs. The maximum speed of the TTY keyboard

and printer is 10 characters per second. It is worth noting that in 1/10 second

there are from about 350 to 3225 passes through the control loop depending on

which jobs if any are running.

The above technique means that each program can only be active on one job

at a time. Jobs fall into one of the following three categories:

(a) Reading program input data from the PTR.

(b) Running a sequence generator.

(c) Typing an analysis of work done by the last generator.

Normally, data input and analysis output lobs are allowed to run to

completion after which the program becomes inactive and available for another

job. Sequence generators, however, run continuously and commands are provided

(section 4) to STOP, HOLD and CONTINUE these lobs. The STOP command terminates

a sequence generator and brings the load to zero (effectively the mean load

applied externally to the fatigue machine) before making the specified program
0

inactive. The HOLD command brings the load to the holding level for the L

particular generator and saves 'continue paramaters' before making the program

inactive. Zero is the holding level for Random, Fixed and TWIST while Block

9

loading holds at the current block mean and the other generators hold the last

output load. The CONTINUE command reactivates a held sequence generator from

the point at which it was held. These two commands allow an operator to inter-

rupt a sequence generator in order to request its latest analysis to be typed.I Similarly at this point he may read in fresh program input data providing this
will not jeopardise the subsequent operation of the software generator. One

program input data item is the number HCL. This is decremented after every

sequence point output and when it reaches zero an automatic HOLD is executed.

As shown in Fig 6, the STOP and HOLD commands set the stop flag belonging to theI specified program. All sequence generators check these flags before every half
cycle (or full cycle in TWIST and Calibration loading) but they have no effect

on other job categories. A KILL command is provided which will stop any job

instantly, release any devices allocated to the program and make the program

inactive. KILL may be used to curtail a data read or analysis output job but isI provided mainly as a means of recovery after a device malfunction or operator

error, eq when a paper tape reads right through the PTR due to insufficient data.

KILL is also used to make a program inactive when its waveform controller stops

requesting another sequence point due to malfunction, specimen failure or

external stop button (section 7). Note that STOP and HOLD are ineffective here

since both these commands involve output to the waveform controller and accept-

ance of the output before the program is made inactive.

The Magtape generator (section 2.6) books the MIA by setting a software

flag. This flag is cleared when the generator is stopped by the STOP or KILL

commands but it is not cleared by the HOLD command and the MTA remains allocated

to this job (and program). If it is not convenient to continue this generator,

to release the MTA, an analysis should be requested for the relevant program and

this should be killed before completion. The KILL command releases all held

devices but may only be issued to an active program.

4 TELETYPE COMMANDS ANID MESSAGES

TTY commands are summarised in Table I and consist of two characters, the

first of which is the program number 1-3 to which the command refers and the

second is the character @ or A-v which specifies the command. Any erroneous

character causes the command decoder CD to revert to readiness to receive a new

two character command. Stop commands to inactive programs, start commands to
IT

oactive programs, data read commands made while the PTR is busy and illegal con-

tinue commands are ignored completely. In any case, command characters them-

selves are not echoed on the printer making this device independent from the

10

keyboard. This is so that commands may be entered on the keyboard while an

analysis is being typed on the printer. However, all legal commands @-U cause

an immediate response on the printer in the form of a 'command echo' (described

below). Normally command V ,if legal, responds immediately with the latest

analysis of the last generator started on the relevant program but will be held

up until the printer is free if given while another program is already typing

its analysis. As shown in Table 1, commands fall into fairly logical groups.

Commands @-C involve stopping or continuing a program and are described in

section 3. Commands D-J start the different sequence generators. Commands K-M

read data used by all generators and N-U read data for particular generators

(section 5). Command V is described above and in more detail in section 6.

Command messages take priority over analysis output and may interrupt them

temporarily. For this reason, all command messages are enclosed in angle

brackets < > and always end by moving the carriage to the start of a new line.

All command messages are listed in Table 1. In order, they consist of command

echoes, interactive messages, error messages and the <DONE n> message. Most

messages end with the program number n to which they refer. Stop command

echoes from @-B say what the command has done. Start command echoes from C-U

say what the command means and are followed by an interactive message which allows

the operator to verify or cancel the command. Responses to interactive messages

are the only keyboard characters which are echoed on the printer. Commands C-T

are verified by typing Y (for YES) in response to the message <SURE? Any other

response aborts the command but N (for NO) is recommended to keep the TTY log

tidy. Command U is verified by the message <PTR READY? as described in

Appendix B.

The inactive message <INVERT LOADS? is typed by all sequence generators

before they commence loading. If the response is N (or any character other

than Y) loads will be tensile (normal) and as defined by the data. If the

response is Y loads will be compressive (inverted) and each output load

(section 7) will have opposite sign to normal*. The rest of the command messages

are described in section 5 and/or Appendix B.

5 PROGRAM INPUT DATA

Data read by commands K-T is listed in Table 2 and data read by command U

is described in section 2.6 and Appendix B. All data items consist of integer

*This applies only for fatigue machines which apply a tensile load when the

demand signal is negative. Some machines usc the opposite convention and for
these 'inverted' would mean tensile.

numbers, some of which may be signed, which are read as lists of one or more

items and automatically stored in the coirect data area as 6, 12, 24 or 36-bit

numbers depending on the program number and the expected data. Variable length

lists (jobs 0 and Q-T) are headed by list lengths as indicated in Table 2.

When a data item is being read all leading non-digits except MINUS are

ignored. ERASE is always ignored wherever it occurs. Numbers can be of any

length compatible with the permitted range (Table 2) and storage size. Leading

zeros are permitted except in the list read by job S which is read by a

different routine which takes every digit as a list item and ignores everything

else. Thus this list (other than tne list length) does not need number termin-

ators. All other data items mvsL have a tLeminator which is aay non-digit

character including NULL (blank tape) but Lxcluding ERASE. These flexible

fcrmats allow noc igi t captions (excitiding MINUS) between numbers in the data

tape as well as nmrber of punctuation and tabulation characters (see

Figs I to 5).

All data read jobs except M, N and U set 'data-in' flags once they

have accepLed their data. See section 8 for initial flag settings and in parti-

cular the flag for scale data (job L). The relevant sequence generators check

these flags and exir with the message <NO DATA n> if any necessary flag is not

set, Data read jobs. start by clearing their flags in case the data is faulty.

o each program's data area, one sector is shared by data read in by jobs Q, R

and S for Fixed and Block loading and as buffers by Maguape jobs I and U

so all thase jobs set or cleac relevant flag.s accordingly.

Job K reads frequency data (section 7) which is mandatory for all

sequence generators except Block loading. This generator clears the frequency

data-in flag since it overwrites this data with its own different frequencies.

The scale factor (section 7) read by job L is mandatory for all sequence

generators. HCL (section 3) does not have a data-in flag since any value in the

store is valid data which can be given a start value by job M . It is used by

all generatorc (except Calibration loading, which therefore does not have an

automatic HOLD). Some operators start a sequence with a small uumber in HCL so

that hardware etc can be checked befire the automatic HOLD when the waveform may

be continued (with a new value in HCL .t with HCL = 0) or started again as

ii2cessary. Starting with HCL 0 effectivcul, means there will never be an auto-

maLic HOLD since there would necU tL L e 236 half cycles before HCL again reached

n zero. Similarly, the start value of R (section 2.1) read by job N does not
C

have a data-in flag. lHcwever, for identical Random sequences the start value of

1*~~~ 1 as well as the rest of the data should be the same. The rest of the program

input data read by jobs 0-T (like N) apply to particular generators and is

~described in section 2.

Table 2 shows the permitted range of each data item and most of these are

checked by the data read jobs, usually after the list has been read. The

standard input routine checks every number to ensure it does not overflow its

allocated storage size. Job R checks the compatibility between items M and

A in each block. Data read by jobs 0 and P are also interdependent and to

ensure resulting loads are within range, job D (see section 2.1) checks their

compatibility before starting its sequence generation. Successful read jobs

terminate with the message <DONE n> . Failed data checks cause the relevant job

to exit with the message <BAD DATA n>

6 ANALYSIS OUTPUT

Each sequence generator (except Calibration loading) starts by identifying

itself to the calling program's analysis flag. Thus the analysis command V

knows which analysis output routine is to be run. If no generator has been run

on the specified program since WG was first loaded the job exits with the

message <NO DATA n> . Fig 7 shows examples of analyses for the six sequence

generators (there is no analysis for Calibration loading). Tho~ first analysis

line identifies the relevant program and generator and the last line is always

END. Most analysis counts are kept in 36-bit stores and are output as Il-digit

numbers.

Each analysis gives the number of half cycles done (HCD) and the number

left to do (HCL) before automatic HOLD. HCD is sufficient for the data defined

Fixed and Magtape sequences. The latter analysis includes the latest maximum

number (0-6) of retries to read a block which is developing parity errors

(Appendix B). HCD is also enough for the Block and FALSTAFF analyses, but these

include the number of flights completed to make it easier to establish Lhe point

reached in the sequence. From the Block analysis the current flight and position

7 in the current block can be deduced from the data defined flight and block lists.

Similarly, FALSTAFF executes its 200 flights in order and the originating *
report 3lists the exact sequence flight-by-flight. This analysis also includes

the number of half cycles into the current flight.
2.n

Teoriginating TWIST report 2gives details of each of the ten flight types

but only lists the order of occurrence of the first 50 flights from the total of

4000 fihsin the sequence. For this reason the TWIST analysis gives separate

13

counts for each flight type completed and also includes the type letter of the

current flight. These flight counts are listed in the type order E, D, C, A, B,

F, G, H, I, J (as given in the caption) which is the actual order in which they

face pseudo random selection by the 'draw without replacement' method. Although

the number of loads at each level for each flight type is known, the actual

levels of the half cycles in the uncompleted flight are not known precisely.

This is because for each new application of a given flight type the order of

occurrence of its loads changes. It was not considered worthwhile to keep

separate load counts (similar to the flight counts) for the current flight although

this could be done for both positive and negative loads. This would require more

program core space and extra loading on the CPU (section 9). Note that the TWIST

analysis does not include GAC. These can be calculated from the input data and

the number of flights started. Note also that in TWIST, STOP and HOLD commands

given during GAC output are delayed until the GAC are completed.

The program input data for Random loading defines this spectrum statisti-

cally but the exact sequence is not known and the random number may be given any

start value. For this reason the Random analysis includes counts of half cycles

at every possible load level (depending on the input data) including GAC substi-

tutions, together with their magnitudes.

7 HARDWARE

This consists of a PDP-8/E computer with extended arithmetic element KE8-E,

TTY, PTR, single transport MTA, 24K of 12-bit core and 12-channel buffered

digital I/O unit DR8-EA. The latter unit interfaces three waveform controllers

through a special multiplexer-cum-optical isolator. Although manufactured else-

where, the MTA is compatible with the TM8-E system described in the handbook

The waveform controllers and interface were designed and built in Structures

Department and operate with the DR8-EA 'unlatched'. They flag their readiness to

receive data about the next sequence point and this consists of the following

three words:

Word I = load magnitude plus sign bit. Range ±100 units.

Word 2 = frequency F . Range 1-100 Hz.

Word 3 = scale factor. Range 1-100%.

These values are sent to the controller as 7-bit binary integers with an

eighth bit reserved for the sign of the load (0 = positive). The corresponding

0 output from the controller is an analogue voltage in the range ±10 V in the form

of a half cosine wave from the old to the new sequence point and taking I/2F seconds.

14- -

The voltage is attenuated by the scale factor. This voltage drives a fatigue

testing machine. In the event of excess load or excess travel (specimen failure)

these machines return a signal to the controller which inhibits any more data

requests. In the software, to help guard against spurious data requests due to

-spikes in the power supplies the flag is checked again after a delay of about

30 P~s to ensure it is still UP. The flag (unless spurious) remains up until the

three words have been received. These words are sent (with built-in software

delay loops) at about 36 pis intervals without further flag checking.

All three controllers are serviced by calls to the completely re-entrant

subroutine OPTP with the next load as argument. For Word 1, OPTP converts the

load to controller format with due regard to the calling program's 'Invert Loads'

flag (section 4). Thus only OPTP knows about inverted loads and the rest of the

software (eg analysis counts) works as though the loads were always 'normal'.

Next, OPTP sets up Word 2 by checking the program's frequency data (normally

input by command K but set automatically by Block loading). This data consists

of the two items FF and FV . FF is a flag and FF =0 means 'fixed

frequency' when the frequency (Word 2) takes the value FV . FF 0 0 means 'fixed

loading rate' and for every output the frequency is calculated as the integral

part of FV/PP where PP is the magnitude of the load change involved. If this

result falls outside the permitted range 1-100 the limiting value is used. For

every sequence generator (so far) in WG , Word 3 is always the program' s input

scale factor (job L). When the three words are assembled OPTP checks the

relevant controller's data request flag as described dbove. If the controller

is not ready the program is swapped by a return to the control loop (section 3

and Fig 6). When the relevant program is again in control of the computer the

control loop sends it back to the same point in OPTP when the flag is tested

again. I/0 to the controllers is via the DR8-EA in the form of 12-bit words.

On output one of the most significant three bits is used to direct the rest of

the word to the appropriate controller and on input the same three bits carry

the data requLSt flags. Bits 0-2 address controllers 1-3 respectively.

Waveform controllers have an in ermediate register between the input

register which is filled by the computer and the output register which suppliesI

the half cosine wave. So long as the input register has been supplied with the

three data words and the data req'-est flag is thus cleared, when the half cosine -

has been completed the registers will be moved up one step, the next half

cosine will start and the data request flag will be set. This allows the sequence

generator 1/2F seconds in which to supply the next sequence point data. If it

15

is late there will be a gap in the waveform which will hold the load at the end

of the current half cosine while the last output from the computer is still in

the intermediate register. Thus the cor.troller works one sequence point behind

the sequence generator and when the software brings a waveform to a controlled

HOLD (or STOP), it outputs the holding load (or zero load) twice.

Waveform controllers have a number of switches , red and green indicator

lights and a 7-digit decimal display of full cycles output, ie pairs of half

cosines. These give the machine operator, who may be some distance away from

the TTY, some control and monitoring capabilities at his working point. They

are also used for waveform controller diagnostics. There are three STOP push
buttons marked SINGULARITY POINT, IMMEDIATE and MD CYCLE, each with a red lamp,

which stop the waveform at the end of the current half cosine, immediately or

at the next mid-point of a half cosine respectively. There are corresponding
RUN push buttons, with green lamps, which cancel the stop condition and continue

the interrupted waveform. The RESET push button clears all registers including

the LOAD CYCLE COUNT display and it zeros the output voltage. RESET can act as

an immediate STOP and has a red lamp. When both RUN lamps are green the data

request is enabled. Controllers also have a selector switch to divide demand

frequency by 10. The LOAD CYCLE COUNT will often display a larger number than

half the analysis HCD because as well as the extra stopping output, some

sequence generators have extra outputs which are not recorded as HCD, eg TWIST

GAG. In fact many of these extra half cosines form only quarter cycles in the

waveform.

8 LOADING AND STARTING WG

Loading and starting procedures are described in the handbook 5which shows

how to key in the appropriate read-in mode loader RIM and how to use it to load

the standard binary loader BIN from the PTR. BIN should be loaded into field 0

where space is reserved for it by WG. The binary program and FALSTAFF constants

files WG.BN and FALS.BN are loaded separately, in any order, from the PTR using

BIN. The loader automatically selects the correct data fields. WG must then be

started at location 0200 in field 0.

When WG is first loaded it starts with all programs inactive, all devices

free and all data-in flags cleared except for the scale data-in flags. WG is

assembled with this flag set for all three programs and with the scale set to the

Ln value 100. This is the normal scale setting and only has to be read in (job Q)

if a different value is required for a sequence generator on a specified program.

I- ~ ~16 ---

If the computer is switched off (or suffers a power failure), WG may be re-

started (at 0200 in field 0) when power is restored since the computer memory

is non-volatile. When WG is re-started INIT (Fig 6) ensures that all programs

are again inactive and all devices are free but the data-in flags (and data)

will be the same as when the computer stopped. Normally BIN, WG and FALS need to

be reloaded only after routine computer maintenance when diagnostic programs

destroy the contents of memory.

9 PROGRAM ENHANCEMENTS

Program code occupies field 0 , fields 1-3 are reserved as data areas for

* programs 1-3 respectively and fields 4 and 5 hold the FALSTAFF constants which are

* J sharable by all three programs. Apart from the page reserved for BIN there aref 21 free pages in field 0 which could be used to hold yet another sequence

generator.

Timing exercises on the slowest sequence generator (TWIST) show that when

all three programs are running this generator at maximum frequency (100 Hz) then

CPU utilization is about 55% and this could rise momntarily to nearly 100% if all

three started a sequence simultaneously or 94% if chey started a flight simul-

taneously. Fatigue tests are rarely run at more than 30 Hz and one proposed

modification to WG is to increase the number of programs (and waveformt

controllers) to five. This would involve only minimal changes to the program

code and an extra 8K of core. Fields 4 and 5 would then be the data areas for

programs 4 and 5 and the FALSTAFF constants would be moved to the extra fields

6 and 7. An extra item of hardware would be required, consisting of a BCD decoder

on the output of the DR8-EA so that the three address bits (section 7) could

address all five controllers. No such modification is required on the input side

since all 12 bits are avail:'ble as data request flags. This proposal includes

the addition of a second MTA.

Another proposal is to have an extra program number 4 (or number 6 if added

to the above modification) devoted solely to analysis~ output for the other

programs thus obviating the present necessity to interrupt a sequence generator

in order to type its analysis (section 3).

17

Appendix A

The original FALSTAFF computer program 3 was not intended to be used as a

live generator but to produce the sequence for paper or magnetic tape driven

fatigue testing machines. A more efficient live generator6 has been produced to

run a single channel at up to nearly 100 Hz, and which requires only 2K of

16-bit core memory. This program is written in assembly language for a PDP-11/ln

computer which is a more powerful machine than the PDP-8/E. This program would

require some development effort if required to run more than one channel

asynchronously and the matrix storage space (at least) would have to be duplicated

for each channel. The method used in WG and described below is very simple tc

implement, it is very fast in operation and the core storage requirement remain

virtually the same however many channels are being run.

PACKED FALSTAFF SEQUENCE

This 35966 point sequence consists of integers in the range 1-32 and is

listed in Ref 3. In WG, lists A-H are program constants used to pack the

sequence into 8K memory locations (actually 8127 12-bit memory words). They are

assembled into the binary file FALS.BN. Table Al below shows the number of items

in each list, their byte size (ie number of bits) and core allocation. Lists

are stored in ascending order of core locations and where more than one item is

packed into a word the bytes are packed from left to right. No list crosses

a field boundary. In a field, location addresses go from 0000 to 7777 (octal).

Table Al

Storage of FALSTAFF lists

List No. of items Byte Core words Start addr Data
name (decimal) size (decimal) (octal) field

A 34566 1 2881 0000 5

B 20692 1 1725 0210 4

C 12471 2 2079 3505 4

D 4734 3 1184 5501 5

E 366 4 122 7544 4

F 200 6 100 0000 4

G 25 12 25 0157 4

HII 12 11 0144 4

18 Appendix A

The sequence consists of 200 different flights and there are 11 different

flight lengths. Each flight starts with GAC values 8, 5, 7, 5 or 8, 6, 8, 6 and

ends with GAC values 6, 8, 6. H is a list of flight lengths less GAC, stored in

ascending order of magnitude as negative numbers. F is a list of indices (1-11)

to list H for each flight in ascending order. The most significant bit (MSB) of

each item in F is used to flag the GAC set, ie when MSB = 0 the flight starts

with 8, 5, 7, 5 and when MSB is I it starts with 8, 6, 8, 6. Thus the sequence is

reduced to 34566 alternate peaks and troughs. The reduced sequence was analysed

and the pertinent information is shown in Table A2 opposite.

Column I is a list, in ascending order of magnitude, of all the positive

ranges (trough-to-peak) in the reduced sequence and column 2 lists the number of

occurrences of each positive range. It is obvious that the numbers in column 2

get rapidly smaller with larger ranges. In PAL it is very easy to store the

Hoeei sas ut ovnett elwt ,2 r4btsoe nFALSTAFF sequence in half words (6-bits) but this would require nearly 18K of core.

method was devised, using lists with these byte sizes to store the reduced sequence

but this took just over 8K of core. This method involved both positive and nega-

tive ranges where the number of bits required to store each range (in sequence)

increased with larger ranges. The total storage was reduced to less than 8K by

discarding the negative ranges and by arranging all the possible trough values in

order of frequency of occurrence as shown in column 3. This is list G (TableAl).

Column 4 lists the number of occurrences of the corresponding trough values in

column 3 and has a similar distribution to column 2. The method of storing the

reduced sequence is described below. Note that the complete sequence consists of

alternating peaks and troughs.

The items in lists A-E are produced by a scan of the reduced sequence for

positive ranges and trough values alternately. See Table Al for the byte sizes in

these lists. For peaks, if the positive range is 3 the next list A item is made

I and the peak has been stored and the next sequence point is examined (as a

trough). Otherwise the list A item is made 0 to signify that list B is

involved in storing this peak as follows. If the positive range is 4 the next

list B item is made I (and the peak has been stored) and if not it is 0 and

list C is involved. Thus positive ranges of 5, 6 or 7 involve Os in both lists

A andB and values 1, 2 or 3 respectively in list C . Similarly positive ranges

8-14 involve Os in lists A-C and values 1-7 in list D while the remaining posi-

tive ranges 15-26 involve Os in lists A-D and values of 1-12 respectively in list

E .Thus the number of bits required to store a peak vary from I to I I with 41% needing

Appendix A 19

Table A2

Peak-trough analysis

Total

Positive Number of Trough No. of List bits Table
range positive value troughs name used per index TS
value ranges (list G) sequence

Is I point

3 7163 10 6711 A I

4 3834 1 4387 B2

5 1622 9 1941 3

6 1127 12 1445 C 44
7 886 13 716 j5

8 715 8 543 6

9 554 14 511 7

10 417 15 327 8

I1 333 16 234 D 7 9

12 198 17 135 10

13 155 18 69 11

14 140 19 37 12

15 81 7 36 (13

16 76 20 23 14

17 44 6 18 15

18 17 5 17 16

19 14 21 12 17

20 3 4 6 18

21 2 22 4 E 11 19

22 0 23 3 20

23 0 1 2 21

24 I 2 2 22

25 0 24 2 23

26 I 3 1 24

- - 25 I 25

0

20 Appendix A

only I bit and less than 2% needing 11 bits. Similarly for troughs, if the

trough value is 10 the next list A item is I and so on according to the trough

values in column 3 (list G): eg a trough value of 25 needs Os in lists A-D

and the value 13 in list E .Column 5 shows the highest list and column 6 the

number of storage bits involved for each occurrence in columns 2 and 4. ThusI list A has 34566 I-bit bytes (2881 core words) which is the length of the

reduced sequence.

The sequence generator starts every 200 flights by setting pointers to the

start of lists A-F. These pointers are moved on one byte after every extraction

from the corresponding list. As described above, for each flight the next item
from list F indicates the appropriate initial GAG values and via list H the

number of reduced sequence points in the flight. For these points, which areI peaks and troughs alternately, the value TS (Column 7, Table A2) is accumulated
by extracting the next values from lists A-E successively until a non-zero item

is found. TS is this item value plus the maximum item size of each list passed

in place of their zero markers, eg when the next items from lists A-D are all

zeros and the list E item is 9 (say) then TS = I + I + 3 + 7 + 9 = 21 . There

are no zeros in list E . More commonly, if the list A item is 1 then TS = 1

If the next sequence point is a peak then its value is the last trough value

plus 2 plus TS. If it is a trough then its value is obtained from list G

indexed by TS .All flights end with the same GAG. This procedure is repeated

for each of the 200 flights when the sequence is repeated by resetting the list

pointers.

There might be further refinements to the above technique or more economi-

cal methods of storing the sequence, but unless they reduce the storage area to

4K or less (thus saving an entire memory field) they would be of no use to WG

Obviously any refinement that produced an inordit~ate increase in the program

code size would be worse than useless, eg packing list G into half words.

21

Appendix B

MAGTAPE DATA

B.1 Magtape format

The Magtape sequence is recorded in NRZI, 9-channel normal mode at 800 BPI

with ODD parity (see Ref 4). In this mode each byte comprises a parity bit and

8 data bits. Data consists of sequence points in the range ±100 and 'data

markers' which are described below. For sequence points the least significant

7 data bits hold the magnitude and the most significant data bit holds the sign

(0 = positive and I = negative). Magtape data is in fixed length 1728-byte

blocks, te half the available buffer area allowed in core for each program. All

Magtape sequences start at the beginning of a tape (BOT) and the last block
should be followed by the end-of-file mark EOF although it is not strictly

necessary for the sequence generator in WG . If detected it causes the genera-

tor to stop with the error message <MAGTAPE ERROR NO 4140 > EOF is a special

I-byte block containing the octal number 023. For I/0, one 8-bit magnetic tape

byte corresponds to one 12-bit core word.

The generator uses a data marker consisting of a full 8-bit byte (377 octal

or 255 decimal) for two purposes. Firstly, the last word in the last block must

be a data marker so that the sequence generator can recognise the last block

without having to read EOF. Secondly, since the sequence (plus I for the above

marker) is not likely to be exactly divisible by 1728, to cater for the remainder,

the data marker (in any position except the first or last word) is used to denote

a partly filled block. Partly filled blocks must be filled out with zeros to

make up the full 1728 words. The generator (section 2.6) uses a double buffer

system, one buffer per block, so that while one buffer is being emptied (to the

waveform controller) the other buffer is being filled (by direct access to core

from the MTA). To avoid gaps in the waveform, partly filled blocks should not

contain less than about 30 sequence points thus allowing time for the next block

to be read. Furthermore, to allow maximum time for rewinding, the last two blocks

should ideally be full, ie containing 1728 and 1727 sequence points respectively.

The rewind command is issued as soon as the last block is read and while the

penultimate block is still being sent to the controller.

B.2 Paper tape data for job U

The Magtape sequence is generated off-line, normally directly on magnetic

0 tape or alternatively on paper tape. WG has a routine (job U) to read the paper

tape sequence and write it on a magnetic tape. Job U may be run on any free

22 Appendix B

program when the MTA is free and ON LINE. The paper tape data must be in

standard 1728 word blocks containing sequence points and data markers as

required and the format like any other input data (section 5). On paper tape,

data markers are the decimal number 255. Data may be split into any number of

paper tapes of manageable length each containing an exact number of blocks. One

block requires about 60 feet of paper tape and only 2.68 inches of magnetic tape!

Intermediate paper tapes (but not the last) are terminated by an extra data marker

after the last block on the tape.

The read job U starts with the interactive message <PTR READY? allowing

the operator time to mount the paper tape in the PTR before he types Y for yes.

Alternatively he may type N to abort the job. The routine which reads single f
blocks into a core buffer starts by reading the first data item only. If this

Iis a data marker it is recognised as the end of an intermediate tape and the

interactive message is repeated for the next paper tape. This extra data marker

is not written on the magnetic tape. If the first item is not a data marker the

rest of the block is read into the buffer. Next the buffer is checked to ensure
every item is a sequence point (range ±100) or a data marker (255). Any detected

data error kills the job with the message <BAD DATA n> where n is the program

number (section 4). If accepted, the block is altered to magnetic tape format

and then written on the magnetic tape. Magnetic tape blocks are written sequen-

tially. Next the block is read back from the MTA and compared with the buffer

to ensure it has been written correctly. If this check fails the job is killed

with the message <MACTAPE ERROR NO 4002> , otherwise the block reading routine

is called to read the next block from the PTR. The last block is recognised,

since its last item is a data marker, and after it has been written the magnetic

tape file is closed with EOF and the job terminates with the message <DONE n>.

The <PTR READY? and <DONE n> messages indicate that no error has been

detected so far.

To check that the paper tapes have been correctly formatted and read

correctly by the PTR, each paper tape is check summed. Every number on the tape

up to and including the extra data marker (if any) is added (as it is read) into

a 12-bit store which is allowed to overflow, ie the check sum is kept modulo

4096. Because of the method used to store negative numbers the check sum values

of these consist of the magnitudes of the numbers plus one for each negative sign.

The off-line program which generates the paper tapes must perform the same check 4

sum for each tape and add it as the last item on the tape. These check sums are

compared before each tape is accepted. The check sums are not written on the

magnetic tape.

Appendix B 23

If, as recoxmmended (section 2.6), the magnetic tape sequence is made up ofI a number of repeat sequences there should be two versions of the last block of a

single sequence and both should hold the last 1726 sequence points. For intermed-I iate sequences the last two items in the last block should be 255 and 0 . On paper

tape this would be followed by the extra data marker and tape check sum. For

the last sequence these last two items in the last block should both be data

markers. Note that both versions of the last tape would then have the sameI check sum. The single sequence could then be read in as often as required using
the former version of the last tape (which could hold only one block) and

finally with the latter version of the last tape.

B.3 Magnetic tape cleanliness

Magnetic tapes should be kept clean and occasionally run through a tapeI cleaning machine. Also, before a tape is mounted on the transport, the tape

guides and reading head should be cleaned to remove all dust and tape particles.

Dirt causes parity errors and these kill the job (I or U) with the message

<MACTAPE ERROR No 4200> . The sequence generator (job I) allows up to six

retries to read a block which exhibits parity errors before finally killing the

job. In its analysis this job keeps a record of the highest number of retries

(0-6) to read a single block. The generator starts with this count at 0.

Note this is not a running count of all parity failures. Periodic analyses

(section 6) will show if a magnetic tape is deteriorating or getting dirty.

Job U does not allow any retries when writing a tape.

-M

L 0

24

I
Table I

COMMANDS AND MESSAGES

CMD Message Remarks

n@ <KILL n> KILL the job (D-V) on prog n

nA <STOP n> STOP the generator on prog n at zero load

nB <SAVE HOLD n> HOLD the generator on prog n and save 'continue' parameters.
Also occurs automatically when HCL - 0

nC <CONTINUE n> CONTINUE 'held' generator on prog n

nD <RANDOM LOAD n> Start Random loading on prog n

nE <FIXED LOAD n> Start Fixed loading on prog n

1F <BLOCK LOAD n> Start Block loading on prog n

nG <TWIST LOAD n> Start Twist loading on prog n

1nH <FALSTAFF LOAD n> Start Falstaff loading on prog n

nI <MAGTAPE LOAD n> Start Magtape loading on prog n

nJ <CAL LOAD n> Start Calibration loading on prog n

nK <READ FREQ n> Read frequency data for next generator (except Block) on
prog n

nL <READ SCALE n> Read scale factor for next generator on prog n

nim <READ NO TO DO n> Read HCL start value for next generator (except Cal) on
prog n

nN <READ RAND n> Read random number start value for job D on prog n

nO <READ RAN LIST n> Read weighting lists for job D on prog n

nP <READ RAN PAPS n> Read amplitude parameters for job D on prog n

nQ <READ FIXED DATA n> Read fixed sequence for job E on prog n

nR <READ BLOCK DATA n> Read block list for job F on prog n

nS <READ FLIGHT NOS n> Read flight list for job F on prog n

nT <READ TWIST DATA n> Read GAC List for job C on prog n

nU <READ MTA DATA n> Read from FTR to MTA using prog n (job I data)

nV Type analysis for last generator run on prog n

<SURE? a> Verify conand (C-T). a - Y for YES or a - N to abort job

<PTR READY? a, Verify command U as above. Repeats for next tape.

<INVERT LOADS? a> Quer) from jobs D-J. u - Y for YES or N for NO (normal)

<BAD DATA n> Job K-U or D on prog n killed by data checking routine

<NO DATA n> Job D-J or V on prog n killed - missing data

<NO MAGTAPE n> Job 1 or U on prog n killed - MTA not ON LINE or busy

<MAGTAPE ERROR NO X> Job I or U killed after MTA malfunction. X is 4-digit octal
contents of MIA main status register

<DONE n> Successful end of data read job on prog n

n is the program number 1-3

,i is the operator's response to anl interactive tmessage
0
'C.

25

Table 2

PROGRAM INPUT DATA

CMD Item Range Comments

K* Frequency data for all generators except Block loading:

FF 0 or I Flag. 0 - Fixed frequency, I - Fixed loading rate

FV I to 100 or When FF - 0. FV - Fixed frequency

I to (2 24-I) When FF I, Frequency - FV/PP for each transition where PP is the magnitude of the
load change

L Scale factor required by all generators:

S I to I00 S - 100 for ±10 V output from waveform controller

M* 36 Start value of number of half cycles left before automatic hold. Used by all genera

HCL 0 to (23-I) tora except Calibration loading

N* R 0 to (231l) Start val e of randum number for Random loading

0 Weighting lists for Random loading:

LP 2 to 21 Length of +ve list. UP - x t I

PO " 0 GAC level. Load - GAC (see PAPS)

P, P 0 Lowest level. Load - LPL

P2 3 PI Second level. Load - LPL + LPI

n n-I nth level. Load - LPL + (n-I) LPI

Px 231 Highest level always 2)47483648. Load - LPL + (x-l) LPI

LN 2 to 21 Length of -ye list

Neg list similar to -v', list (could be identical)

N 231 Highest -ye level. Load - -(LNL + (y-l) LNI)Y

P Program amplitudo parameters (PAPS) for Random loading:

GAC -1 to -100 Air-ground-air load

LPL 0 to 100 Magnitude of lowest +ve load

LPI 0 to 100 Magnitude of +ve incremental load

PT I to x Truncation level for +ve loads

LN. 0 to 100 Magnitude of lowest -ve load

LNI 0 to 100 magnitude of -ve incremental load

NT I to y Truncation level for -ve loads (except GAC)

Q Sequence for Fixed loading:

L I to 3455 Length of list

CI to CL - 00 to 00 L signed sequence load points

R Block list for Block loading:

N I I to 0 Number of flight cases. Each case defines a flight type in ascending order (0 to 9).
One case follows:

N2 0 to 400 Number of blccka in this flight case (maximum total blocks * 400). N2 blocks must follow.

One block comprises:

M - 00 to 100 Mean load for this block

A - 00 to 100 Magnitude of alternating I cycles about M. Sign of A denotes direction of first cycle

('ve - upwards)

F I to 00 Fixed frequency for this block

BN I to (2 4-I) Number of I cycles in this block

S Flight list for Block loading:

N I to 2890 Number of flights in list

T, to TN 0 to 9 List of N flight type numbers

. N

TO, GAC list for Twist loading:
G 0 to 50 Number of load points in list

KI to KG - 00 to 100 List of C load points (usually negative)

5 These data could be changed during a hold before a continue

......... .-._...................................... .. ,

IJ
26

REFERENCES

No. Author Title, etc

I F. Sherratt The use of small on-line computers for random loading

P.R. Edwards fatigue testing and analysis.

Journal of the Society of Environmental Engineers,

December 1974

2 J.B.de Jonge A standardized load sequence for flight simulation tests

D. SchUtz on transport aircraft wing structures.

H. Lowak NLR TR 73029C, LBF-Bericht FB-106

J. Schijve

3 H. Lowak Standardisiertes Einzelflugprogramm fUr Kampfflugzeuge

M. Hck FALSTAFF.

D. Schztz)LBF-Bericht No 3045 (1976), IABG-Bericht No TF 568 (1976)

W. Schitz

4 PDP-8/E Small Computer Handbook

PDP-8 Harabook Series

Digital Equipment Corporation

5 Introduction to Programming

PDP-8 Handbook Series

Digital Equipment Corporation

6 J.H. Argyris Analyse und Synthese von Betriebsbelastungen.

W. Aicher ISD-Bericht iNo 193 (1976)

H.J. Ertelt

Fip 1&2

RAND DATA

0#67 CONSTANT FREQUENCY
50 SCALEI200 NO TO DO
2 START RAN NO
WEIGHTING LISTS
5 P05 LIST LENGTH

0107374182 GAC = V%
1395864371 LOWEST - LXI

1932735283 NEXT - XXVI
2104533975 NEXT = VIII%
2147483648 LAST = II%
4 NEG LIST
0107374182 VI
1503238554 LXVI

1932735283 XXI
2147483648 X%

PAP S
-50 GAC LEVEL

*10 LOW POS LEVEL
10 P05 STEP

5 NO TRUNCATION
12 LOW NEG LEVEL
12 NEG STEP
4 NO TRUNCATION

Fig 1 Random loading

FIXED DATA
0,40 CONSTANT FREQ
50 SCALE
98 NO TO DO

14 LIST LENGTH
-30, -10,-40,0, -30,- 10,-30
30, 10,-40.,0,30,10,p30

Fig 2 Fixed loading

K7

Figs 3- 5

BLOCK DATA
100 SCALE
140 NO TO DO
2 FLIGHT LIST LENGTH
1,2 FLIGHT LIST
3 CASES IN BLOCK LIST

0 NUL FLIGHT 0
2 BLOCKS IN FLIGHT I
10 20 20 4
10 -10 30 12
3 BLOCKS IN FLIGHT II

10 5 100 50
15 10 50 24
20 5 100 50
NUL FLIGHTS III TO IX

Fig 3 Block loading

TWIST DATA
0.25 CONSTANT FREQ
100 SCALE
300 NO TO DO
3 GAC LIST
-65.-55j-65

Is *

Fig 4 Twist loading

FALSTAFF DATA
1,400 CONSTANT LOADING RATE
100 SCALE
506 NO TO DO

Fig 5 Falstaff loading

I III Illll "............ "......................J I ... I L ..

Fig 6

START200

SWITCH IIBEGT 1
BEGIN)Initialize hardware

and in case of restarts
o ,Inlitialize control

No variables and flags.
T fe(Note: this does not

Linclude data-in flags)

No AnyCMOmsgeYes (not typing aNo Any, , message) BEGIN
TTY input?

Yes

Assemble TTY CMD:- STOP
N * number (1 - 3)

L " letter 1@-V)

No CMDprog 0

Complete?BEGN

j Yes
c, Yes (inactive) Stj1 q WTHJu~r fe-

S TM0subroutine

ignore stop CMDs @ Swap return address
Ignore all but stop A or B. Also data read SWITCH and current

CMos @ A or B. CMOs K to U if PTR is data field setting
If L @ CCm I busy. Else set with corresponding
If L - A, stop flag - I CC. 2 to 21 values in the switch

If L - B, stop flag • -1 for L * C to V table indexed by
Istop flag in field N) 'prog' (the program

currently in control
of the CPU)

(CHANGE

. t (Return to swap address

Change current RETURN)with swap DF set and
program number prog AC a0)

(3A program's first call to SWITCH (at START)
takes WG to the start of a Job where It

(Inactive - stay in loop) will eventually meet another call to SWITCH

-,progj 0 Yes (usually when baulked by I/O) which returns
WO to BEGIN -and so on for each 'active-

program.

(Active - return to job) When a sequence generator "holds" the
Cpr'g e -I? , continue address and data field are saved.

Yes The "continue" job (command C) places the

No CSAD saved parameters in the switch table and
returns to the interrupted generator by a Jump

Get start address from to START.

job table indexed by
CCprog. Start data/

field - 0. Put these (Start new job)
params into switch
table indexed by prog

(Activate and go)

F START C l

Fig 6 Control loop

Fig 7

CHANNEL I RANDOM ANALYSIS

1/2 CYCLES DONE 00000010000
1/2 CYCLES LEFT 00000000000

LAST RANDOM NO 00358299812
G.A. CYCLES (+VE) 00000000234
G.A. CYCLES (-rE) 00000000215
GA. LEVEL -060

VE LEVEL 1/2 CYCLES
015 00000003249
025 00000000967

035 00000000218
045 00000000331

-VE LEVEL 1/2 CYCLES
012 00000003065
020 00000000939

028 00000000344

036 00000000224
044 00000000214

END

CHANNEL 2 FIXED ANALYSIS

1/2 CYCLES DONE 00000009301

1/2 CYCLES LEFT 00000990699
END

CHANNEL 3 BLOCK ANALYSIS

1/2 CYCLES DONE 00000000100

1/2 CYCLES LEFT 00000000000
FLIGHTS COMPLETED 00000000001
END

CHANNEL I TWIST ANALYSIS

1/2 CYCLES DONE 00000100000
1/2 CYCLES LEFT 00000000000
FLIGHTS COMPLETED EDCABFGHIJ

00000000002
00000000002

00000000000
00000000000
00000000000
00000000006
00000000018
00000000067
00000000152
00000000253

CURRENT FLIGHT C
END

CHANNEL 2 FALSTAFF ANALYSIS

1/2 CYCLES DONE 00000035970
1/2 CYCLES LEFT 68719440766

1/2 CYCLES INTO FLIGHT 004

END

CHANNEL 3 MAGTAPE ANALYSIS

1/2 CYCLES DONE 00000001000
1/2 CYCLES LEFT 00000000000
MAX PARITY RETRIES 0

ED

Fig 7 Sample analyses

above must b.emiked to bhda tb. Illi

1. IDW ReuOeO Z. Odiso'Rfws 4.,~*
(t b ~u h *J) RAI" J N/A.

S. DEWC Code for Originator: 6-Originater (Omporate Aiztho#Nainp and Locsten
7673000W Royal Aircraft Ktatbliabmrit, Famnborough, Htants, l

Sa. Sponsoring Agency's Code 6a. Sponsoring Agency (Contract Authority) Nam and Location

H/AN/

I. Tidle A time-sharing computer program to drive up to three independent fatiue,

testing machines

7a. (For Translations) Title in Foreign Language

7b. (For Conference Papers) Title, Place and Date of Conference

8. Author 1. Surname, Initials 9a. Author 2 9b. Authors 3, 4.... 10. Date Pa" ~s
Watt, W. MY30 6

11. Contract Number 12. Period 13. Prqect 14. Other Reflertnce es
N/A N/A _________

IS. Distribution statement
(a) Controlled by -
(b) Special limitations (if any) -

16. Descriptors (Keywords) (Descriptors marked are selected froin TEST)
Fatigue. Computer. Program.

WG is a PDP-8/E computer program which offers a choice frwom seven resident
software sequence generators to each of three independent hardware waveform
controllers which drive electrohydraulic fatigue testing mathines. Tb. progra
is controlled by teletype commands and paper tape input data. Under prsa
control, each controller may be run at a specified fixed frequency, or flied
loading rate. Various analysis counts are kept which may be typed *a townaud.
One generator takes its sequence off magnetic tape and is restricted to OW.
controller at a time. Mother version of WO may be produced, which will Mu fiv.
waveform controllers and two magnetic tape unite.

i'V

RAE ForisA143

